
10g Advanced SQL and Performance in 200510g Advanced SQL and Performance in 2005

Tim Quinlan
TLQ Consulting Inc.

OracleWorld
September, 2005

2

Introduction
We will cover advanced SQL concepts, real-world problems
and solutions and the performance impact of advanced SQL
coding decisions. Ansi-compliant & Oracle 10g functions and
features as well as some creative solutions to SQL problems
will be discussed. This will be a fast-paced look at a fun-topic.
Some of the things we will look at are:

9i/10g Full outer joins and join indexes
Case and Decode
9i and 10g Analytics (e.g. Rankings)
Medians
First and Last Functions
Model and (of course) more…

3

Finding the First/Last N Rows
Limiting Rows with Rownum

Want to find the first or last n rows in a table? Use Rownum!
For each row returned by a query, the ROWNUM pseudo-column
returns a number indicating the order in which Oracle selects the
row from a table or set of joined rows. This list however is not
ordered. An example of this is:

select username,rownum from dba_users order by username;
USERNAME ROWNUM
-- ---------------
OUTLN 3
SYS 1
SYSTEM 2

ORDER BY will usually not solve the problem since rownum is
applied to the row before they are sorted.

4

Ordering can be corrected by retrieving the rows and
sorting them in a subquery and then applying the
rownum in the outer query.
greater-than sign used with rownum and a positive
integer will never return a row.
To get the first 3 rows:

SELECT username,rownum FROM
(SELECT username FROM dba_users
ORDER BY username)
WHERE ROWNUM < 4;

Finding the First/Last N Rows
Limiting Rows with Rownum

5

Greater-than sign used with rownum and a positive
integer will not return a row
To show the last 3 rows we therefore cannot use >, but
must instead use < and must order the rows descending:

SELECT username,rownum FROM (SELECT
username FROM dba_users ORDER BY username
desc) WHERE ROWNUM < 4

USERNAME ROWNUM
------------------ ----------------
TESTUSER 1
SYSTEM 2
SYS 3

Finding the First/Last N Rows
Limiting Rows with Rownum

6

Analytic Functions
Specialized functions that return aggregate values
based on a grouping of rows.
Multiple rows can be returned for each group.
Each group can be called a “window” although,
unfortunately, the term “partition” is used in SQL
Calculations can be performed on rows in the
window.
Can only appear in “Select” or “Order By” clause.

Last operators performed in a query except “order
by”

Let’s look at some …

7

Finding the First/Last N Rows
Limiting Rows with Row_Number

Row_Number function not related to Rownum.
an analytic function that assigns a unique number in the sequence
field defined by ORDER BY to each row in a partition. e.g.

SELECT sales_rep, territory, total_sales, row_number() OVER
(PARTITION BY territory ORDER BY total_sales DESC) as
row_number FROM sales;

Sales_Rep Territory Total_Sales Row_Number
Simpson 1 990 1
Lee 1 800 2
Blake 5 2850 1
Allen 5 1600 2

See Explain on the next slide

8

Analytic Example with Row_Number

SELECT sales_rep, terr, total_sales, row_number()
OVER (PARTITION BY terr ORDER BY total_sales DESC) as row_number FROM

sales

call count cpu elapsed disk query current rows
Parse 1 0.02 0.09 0 1 0 0
Execute 1 0.00 0.00 0 0 0 0
Fetch 2 0.00 0.00 0 7 0 4
total 4 0.02 0.09 0 8 0 4

Rows Execution Plan
0 SELECT STATEMENT MODE: ALL_ROWS
4 WINDOW (SORT)
4 TABLE ACCESS (FULL) OF 'SALES' (TABLE)

next->rank

9

Ranking: The Rank Function
An analytic function which allows us to compare a row to a
window of rows. Consider a Sales table:
sales_rep territory total_sales

Jones 1 345
Smith 1 345
Lee 1 200
Simpson 1 990

SELECT sales_rep, territory, total_sales,
RANK() OVER (PARTITION BY territory ORDER
BY total_sales DESC) as rank FROM sales;
sales_rep territory total_sales rank
Simpson 1 990 1
Jones 1 345 2
Smith 1 345 2
Lee 1 200 4

10

Ranking and Aggregates

sales_rep terr prod total_sales
Jones 1 8 200
Smith 1 8 400
Lee 1 9 800
Simpson 1 9 990
Blake 5 9 1600
Allen 5 8 1500
Ward 5 9 1250

territory product sum(total_sales) rank
1 9 1790 1
1 8 600 (typo) 2
5 9 2850 1
5 8 1500 2

SELECT terr, prod, sum(total_sales), RANK() OVER
(PARTITION BY territory ORDER BY sum(total_sales) DESC) as rank
FROM sales group by territory, product;

1) Input data to

2) Results in

11

Rankings With Different Boundaries
Rank can be used for different groups. Here are 2 ranks: One
for a products total sales in a territory and the second for a
product (in a territory) across all territories.

SELECT terr, prod, sum(ttl_sales),
RANK() OVER (PARTITION BY terr ORDER BY sum(ttl_sales)

DESC) as rank_prod_by_terr,
RANK() OVER (ORDER BY sum(ttl_sales) DESC) as rank_prod_ttl
FROM sales GROUP BY territory, product ORDER by territory;

territory product sum(total_sales) rank_prod_per_terr rank_prod_ttl
1 9 1790 1 2
1 8 400 2 4
5 9 2850 1 1
5 7 1500 2 3

12

Explain for Rankings with Different Boundaries

SELECT terr, prod, sum(total_sales),
RANK() OVER (PARTITION BY terr ORDER BY sum(total_sales) DESC) as

rank_prod_by_terr,
RANK() OVER (ORDER BY sum(total_sales) DESC) as rank_prod_ttl
FROM sales GROUP BY terr, prod ORDER by terr;

Rows Execution Plan
0 SELECT STATEMENT MODE: ALL_ROWS
4 WINDOW (SORT)
4 WINDOW (SORT)
4 SORT (GROUP BY)
7 TABLE ACCESS (FULL) OF 'SALES' (TABLE)

13

Rankings
Rankings are extremely flexible and provide the following:

Ranking per-cube and rollup-group
Dense Rank vs. Rank

Handles ties by going to the next value
Cume-Dist Ranking (Inverse Percentiles)

Dist computes a fraction of a value relative to its
position in its partition. It returns the result as a
decimal between 0 (not including 0) and 1.
Terr Prod Amt Cume_Dist
1 5 800 .666667
1 7 300 .333333
1 8 1300 1

14

Rankings
Percent Rank Function: like cume_dist but uses row
counts as a numerator and returns values between 0 and 1.
Ntile Function: perform calculations and statistics for
tertiles, quartiles, deciles and other summary stats:

SELECT sales_rep, total_sales, NTILE(4)
OVER (ORDER BY total_sales DESC NULLS FIRST)
AS quartile FROM sales;

Sales_Rep Total_Sales Quartile
Jones 2000 1
Smith 1000 2
Blake 700 3
Ward 400 4

15

Hypothetical Rank
Analytic functions can be used to determine the rank of
a “hypothetical” row inserted into a table.
For example, consider a set of product categories that
have total_sales determines by sub-category.

What would the rank of a new product subcategory
with sales of $2,000 be?
What would the rank of a new product subcategory
with sales of $1,480 be?
The example on the next slide shows how rank,
percent_rank and cume_dist can all be used in a
single hypothetical rank query.

16

Hypothetical Rank
Original List

PROD TOTAL_SALES
---------- ---------------------

7 700
7 750
7 1600
7 2100
8 150
8 200
8 300
8 400
8 1200
9 1400
9 1475
9 1500
9 1600
9 2400

select prod,
RANK(2000) within group (ORDER BY

total_sales desc) as HRANK,
TO_CHAR(PERCENT_RANK(2000) WITHIN

Group (ORDER BY total_sales),'9.999')
as HPERC,

TO_CHAR(CUME_DIST(2000) WITHIN
Group (ORDER BY total_sales),'9.999')
as HCUME

FROM sales Group by prod;

PROD HRANK HPERC HCUME
---------- ---------- ---------- -----------

7 2 .750 .800
8 1 1.000 1.000
9 2 .800 .833

17

Lead Analytic Function
Get the next value in a list without a self-join or sub-query
E.g. a table employee with columns ename and hiredate.
Develop a query where each row has the employees name,
their hiredate and the next employees hire date.

SELECT ename, hiredate, LEAD(hiredate, 1)
OVER (ORDER BY hiredate) AS next_hire_date
FROM employee;

ENAME HIREDATE NEXT_HIRE_DATE
COHEN 1991-APR-01 1991-OCT-31
KING 1991-OCT-31 1992-JAN-10
LEE 1992-JAN-10
Offset of 1 (default) tells the function to get the next row.

18

Explain for Lead Analytic Function

SELECT ename, hiredate, LEAD(hiredate, 1)
OVER (ORDER BY hiredate) AS next_hire_date
FROM employee;

Rows Execution Plan
0 SELECT STATEMENT MODE: ALL_ROWS
3 WINDOW (SORT)
3 TABLE ACCESS (FULL) OF 'EMPLOYEE' (TABLE)

19

Lag Analytic Function
To get the date of the employee hired before the employee on
a row, use the LAG analytic function:

SELECT ename, hiredate, LAG(hiredate, 1)
OVER (ORDER BY hiredate) AS prev_hire_date
FROM employee;

ENAME HIREDATE PREV_HIRE_DATE
COHEN 1991-APR-01
KING 1991-OCT-31 1991-APR-01
LEE 1992-JAN-10 1991-OCT-31
Great for determining effective and expiry dates on a row
where only 1 date exists.

20

First/Last Functions
Analytic, aggregate functions that operate on a set of
values from a set of rows
When you need the lowest or highest value from a
sorted set to compare to another value from a function
such as min, max, sum,avg, count. Use the Last and
First analytic functions
For example: to find the max salary of employees with
the highest bonus and the lowest salary of employees
with the lowest bonus

See next slide ->

21

First/Last Functions
salary deptid bonus
1,000,000 100 20,000
100,000 100 20,000

60,000 100 15,000
40,000 100 15,000

deptid low high
100 40000 1000000

SELECT deptid,
min(salary) keep (dense_rank FIRST order by bonus) "low",
max(salary) keep (dense_rank LAST order by bonus) "high",
FROM emp_salary group by deptid;

Input data

22

First/Last Functions
To achieve the same thing without these functions:

SELECT a.deptid deptid, min(a.salary) low, max(c.salary) high
FROM emp_salary a,

(select min(bonus) bonus from emp_salary) b,
emp_salary c,
(select max(bonus) bonus from emp_salary) d

WHERE a.bonus = b.bonus
and c.bonus=d.bonus

GROUP BY a.deptid;
Compared to:

SELECT deptid,
min(salary) keep (dense_rank FIRST order by bonus) "low",
max(salary) keep (dense_rank LAST order by bonus) "high",
FROM emp_salary group by deptid;

23

Explain for First/Last Functions

SELECT deptid,
min(salary) keep (dense_rank FIRST order by bonus) "low",
max(salary) keep (dense_rank LAST order by bonus) "high"
FROM emp_salary group by deptid;

Rows Row Source Operation
0 SELECT STATEMENT MODE: ALL_ROWS
1 SORT (GROUP BY)
4 TABLE ACCESS (FULL) OF 'EMP_SALARY' (TABLE)

24

Explain for SQL Not Using First/Last Functions
SELECT STATEMENT

SORT GROUP BY
MERGE JOIN

SORT JOIN
NESTED LOOPS

MERGE JOIN
VIEW

SORT AGGREGATE
TABLE ACCESS FULL EMP_SALARY

FILTER
TABLE ACCESS FULL EMP_SALARY

VIEW
SORT AGGREGATE

TABLE ACCESS FULL EMP_SALARY
SORT JOIN

TABLE ACCESS FULL EMP_SALARY

25

First_Value, Last_Value
Analytic

Similar functions, so we will look at first_value.
An analytic function that gets the first value in an ordered set
of rows.

e.g. get the name of the employee with the lowest bonus.
Select emp_name, emp_id, bonus, first_value(emp_name)
Over (order by bonus asc rows unbounded preceding) as low_bonus
From (select * from emp_sal order by emp_id);
EMP_NAME EMP_ID BONUS LOW_BONUS
carter 2 20,000 carter
rose 3 20,000 carter
williams 7 25,000 carter
bosh 8 30,000 carter

next->Width-Bucket

26

Histogram Function
Width-Bucket

Not Optimizer Histograms: Height-based place the
same number of values into each range
Width-based function: each column value is put into
a corresponding bucket
For each row, returns the number of the histogram
bucket for the data
(expr,min_value,max_value,num_buckets)
Equiwidth function dividing data into equal interval
sizes.

Ntile function creates equiheight buckets.

27

Histogram Function
Width-Bucket

SELECT salesrep_id, total_sales,
WIDTH_BUCKET(total_sales,0,1000.1,10) “sale group"
From Sales Where cityname = 'GOTHAM'
order by total_sales; salesrep_id total_sales sale group

152 150 2
151 200 2
153 400 4
154 400 4
155 785 8
156 800 8
157 1000 10
158 1475 11

next->Medians

ID Sales Grp

149 -20 0
150 0 1

28

Medians in SQL
Not supported by standard SQL: e.g. from Celko and Date. Look
at an example of 4 Salaries and find the median of $80,000.
1st split the table in 2 & get the lowest value of the top half rows
“Get salaries <= 2 salaries, then get the min value from these”

Input Values
Salary
1,000,000
100,000
60,000
40,000

Get lowest value of top half: 100,000
Select MIN(e.salary) FROM
emp_salary e Where e.salary in

(Select E2.salary -- top half rows
FROM Emp_Salary E1, Emp_Salary E2
WHERE E2.salary <= E1.salary
GROUP BY E2.salary HAVING count(*) <=

(Select CEIL(count(*) /2) FROM Emp_Salary));

29

Medians in SQL
Next: Get highest value of bottom half: 60,000
“Get salaries >= 2 salaries, then get the max value from these”

Select MAX(e3.salary) FROM emp_salary e3 Where e3.salary in
-- get the bottom half rows below

(Select E4.salary
FROM Emp_Salary E5, Emp_Salary E4
WHERE E4.salary >= E5.salary
GROUP BY E4.salary HAVING count(*) <= (Select
CEIL(count(*) /2) FROM Emp_Salary));

Next, combine the queries above and take the average to
get this median value of $80000 as shown below:

30

Medians in SQL
Select avg(E.salary) AS median From Emp_Salary E Where E.salary in
(Select MIN(e.salary) FROM emp_salary e
Where e.salary in
(Select E2.salary FROM Emp_Salary E1, Emp_Salary E2 WHERE

E2.salary <= E1.salary
GROUP BY E2.salary HAVING count(*) <=
(Select CEIL(count(*) /2) FROM Emp_Salary))
UNION
Select MAX(e3.salary) FROM emp_salary e3 Where e3.salary in
(Select E4.salary FROM Emp_Salary E5, Emp_Salary E4
WHERE E4.salary >= E5.salary GROUP BY E4.salary
HAVING count(*) <=
(Select CEIL(count(*) /2) FROM Emp_Salary)));

31

0 SELECT STATEMENT MODE: ALL_ROWS
1 SORT (AGGREGATE)
2 HASH JOIN
2 VIEW OF 'VW_NSO_3' (VIEW)
2 SORT (UNIQUE)
2 UNION-ALL
1 SORT (AGGREGATE)
2 HASH JOIN
2 VIEW OF 'VW_NSO_1' (VIEW)
2 FILTER
4 SORT (GROUP BY)

10 NESTED LOOPS
4 TABLE ACCESS (FULL) OF 'EMP_SALARY' (TABLE)

10 TABLE ACCESS (FULL) OF 'EMP_SALARY' (TABLE)
1 SORT (AGGREGATE)
4 TABLE ACCESS (FULL) OF 'EMP_SALARY' (TABLE)
4 TABLE ACCESS (FULL) OF 'EMP_SALARY' (TABLE)
1 SORT (AGGREGATE)
2 HASH JOIN
2 VIEW OF 'VW_NSO_2' (VIEW)
2 FILTER
4 SORT (GROUP BY)

10 NESTED LOOPS
4 TABLE ACCESS (FULL) OF 'EMP_SALARY' (TABLE)
10 TABLE ACCESS (FULL) OF 'EMP_SALARY' (TABLE)
1 SORT (AGGREGATE)
4 TABLE ACCESS (FULL) OF 'EMP_SALARY' (TABLE)
4 TABLE ACCESS (FULL) OF 'EMP_SALARY' (TABLE)
4 TABLE ACCESS (FULL) OF 'EMP_SALARY' (TABLE)

Explain for Median

32

Medians in 9i
Can use the new inverse percentile function.
an inverse distribution function that assumes a
discrete distribution model
An expression evaluates a value to a distribution
between 0 and 1 as with cume_dist.
The inverse percentile can then find the value at
the 0.5 level.

In the example on the next slide this is 100,000
Using 0.51 would have given 60,000
Not quite what we want …

Requires more sophisticated and complex
use of this function … take a look ->

33

Medians in 9i
SELECT salary, deptid, CUME_DIST() OVER

(PARTITION BY deptid ORDER BY salary DESC)
cume_dist,

PERCENTILE_DISC(0.5) WITHIN GROUP (ORDER BY
salary DESC) OVER (PARTITION BY deptid)
percentile_disc

FROM emp_salary ;
salary deptid cume_dist percentile_dist

1000000 100 .25 100000
100000 100 .5 100000
60000 100 .75 100000
40000 100 1 100000

34

Medians in 10g
Finally, a Median function!

Inverse distribution function assuming continuous
distribution.
Null values are ignored.
Numeric datatypes and nonnumeric ones can be
converted to numeric.
Median first orders the rows.
With N as the number of rows, Oracle determines
the median row number (MRN) as:
MRN = 1 + (0.5*(N-1))

35

Medians in 10g
Once Oracle has determined the MRN, it gets ceiling row
number (CRN) and floor row number (FRN) and uses these
to get the Median.
CRN=ceiling(RN) and FRN = floor(RN)

Odd number of rows:
If (CRN=FRN=RN) then median = RN_value

Even Number of rows:
e.g. 4 rows: (“row 3 value” * .5) + (“row 2 value” * .5)

Select deptid, median(salary)
From Emp_Salary
Group By deptid ;

36

Explain for the Median Function

Select deptid, median(salary)
From emp_salary
Group By deptid;

Rows Execution Plan
0 SELECT STATEMENT MODE: ALL_ROWS
1 SORT (GROUP BY)
4 TABLE ACCESS (FULL) OF 'EMP_SALARY' (TABLE)

37

Full Outer Joins – 9i/10g
Oracle9i/10g has “many”
SQL92 and 99 features
Old Proprietary Outer join:

select t1.t1col01, t2.t2col01
from t1, t2
where t1col01 = t2col01 (+)
UNION
select t1.t1col01, t2.t2col01
from t1 , t2
where t1.t1col01 (+) = t2.t2col01;

Result:
t1col t2col
C1
C5 C5

C9
C4

38

Full Outer Joins – 9i/10g
THE SAME RESULT AS

Select t1.t1col01, t2.t2col01
From t1 FULL OUTER JOIN t2
ON t1col01 = t2col01
order by t1.t1col01;

Ansi SQL99 compliant syntax for full, left, right
outer joins.
Above is slightly more efficient that the outer join
on the previous slide.

See Explain on the next slide

39

Rows Execution Plan Full Outer Join with Union (OLD) Syntax
0 SELECT STATEMENT MODE: ALL_ROWS
3 SORT (UNIQUE)
4 UNION-ALL
2 HASH JOIN (OUTER)
2 TABLE ACCESS (FULL) OF 'T1' (TABLE)
2 TABLE ACCESS (FULL) OF 'T2' (TABLE)
2 HASH JOIN (OUTER)
2 TABLE ACCESS (FULL) OF 'T2' (TABLE)
2 TABLE ACCESS (FULL) OF 'T1' (TABLE)

Rows Execution Plan Full Outer Join New Syntax
0 SELECT STATEMENT MODE: ALL_ROWS
3 SORT (ORDER BY)
3 VIEW
3 UNION-ALL
2 HASH JOIN (OUTER)
2 TABLE ACCESS (FULL) OF 'T1' (TABLE)
2 TABLE ACCESS (FULL) OF 'T2' (TABLE)
1 HASH JOIN (ANTI)
2 TABLE ACCESS (FULL) OF 'T2' (TABLE)
2 TABLE ACCESS (FULL) OF 'T1' (TABLE)

next->Partitioned Outer Joins

40

Partitioned Outer Joins in 10g
Can convert sparse data into dense data.
aka: a Group Join

Union of outer joins
Logically partitioned data based on “Partition By”
clause.
Accepted by ISO and ANSI for SQL standards
E.g. HR application tracks the number of
employees in the company every week. If the
number does not change, no entry is inserted into
the emp_count table. We want an entry for every
week regardless of whether this number has
changed.

41

Partitioned Outer Joins in 10g- Example
Select *
From emp_count;
REG WEEK COUNT
R1 01-JAN-05 1023
R1 08-JAN-05 1030
R1 22-JAN-05 1033
R1 05-FEB-05 1032

Select start_dt from week
Start_dt
01-JAN-05
08-JAN-05
15-JAN-05
22-JAN-05
29-JAN-05
05-FEB-05

Select region, start_dt, count
From emp_count
Partition By (region)
Right Outer Join week
On (emp_count.week=week.start_dt)
Order by region, start_dt;
REG START_DT COUNT
R1 01-JAN-05 1023
R1 08-JAN-05 1030
R1 15-JAN-05 s.b. 1030
R1 22-JAN-05 1033
R1 29-JAN-05 s.b. 1033
R1 05-FEB-05 1032

Continued on next slide

42

Partitioned Outer Join Explain
Select region, start_dt, count
From emp_count
Partition By (region)
Right Outer Join week
On (emp_count.week=week.start_dt)
Order by region, start_dt;

Rows Execution Plan
------- ---

0 SELECT STATEMENT MODE: ALL_ROWS
6 VIEW
6 MERGE JOIN (PARTITION OUTER)
7 SORT (JOIN)
6 TABLE ACCESS (FULL) OF 'WEEK' (TABLE)
4 SORT (PARTITION JOIN)
4 TABLE ACCESS (FULL) OF 'EMP_COUNT' (TABLE)

43

Partitioned Outer Joins in 10g- Example (cont.)
Making Partitioned Data Dense

Select region, start_dt,
LAST_VALUE(count ignore nulls)
OVER (Partition By region
Order by region, start_dt) week
FROM (
Select region, start_dt, count
From emp_count
Partition By (region)
Right Outer Join week
On (emp_count.week=week.start_dt))
Order by region, start_dt;

REG START_DT COUNT
R1 01-JAN-05 1023
R1 08-JAN-05 1030
R1 15-JAN-05 1030 dense
R1 22-JAN-05 1033
R1 29-JAN-05 1033 dense
R1 05-FEB-05 1032

44

Making Partitioned Data Dense Explain
Select region, start_dt, LAST_VALUE(count ignore nulls)
OVER (Partition By region Order by region, start_dt) week
FROM (Select region, start_dt, count
From emp_count
Partition By (region)
Right Outer Join week
On (emp_count.week=week.start_dt))
Order by region, start_dt;

Rows Execution Plan
------- ---

0 SELECT STATEMENT MODE: ALL_ROWS
6 WINDOW (BUFFER) new from the last explain
6 VIEW
6 MERGE JOIN (PARTITION OUTER)
7 SORT (JOIN)
6 TABLE ACCESS (FULL) OF 'WEEK' (TABLE)
4 SORT (PARTITION JOIN)
4 TABLE ACCESS (FULL) OF 'EMP_COUNT' (TABLE)

45

Group By with Rollup
Group by can perform a function on a grouping

Select region, territory, sum(sales_dollars)
TOTAL_SALES
From sales group by region, territory;

Results in:
REGION TERRITORY TOTAL_SALES
EAST 1 1500.00
EAST 2 2000.00
WEST 1 3000.00
WEST 2 500.00

ROLLUP extends this and can also summarize at the Region
level by creating superaggregates.

46

Group By with Rollup
Select nvl(region,’Total Company’) REGION,

nvl(territory, ‘Total Region’) TERRITORY,
sum(sales_dollars) TOTAL_SALES

FROM sales GROUP BY ROLLUP(region, territory);
Results in (note substitution of literals from nvl):
REGION TERRITORY TOTAL_SALES

EAST 1 1500.00
EAST 2 2000.00
EAST Total Region 3500.00
WEST 1 3000.00
WEST 2 500.00
WEST Total Region 3500.00
Total Company 7000.00

47

Group By with Cube
Cube generate superaggregates by giving totals for each
Territory regardless of Region (as one example).
Cube gives us totals for all combinations of Columns chosen
in the Group By clause for OLAP Services
Select decode(grouping(region),1,’Total Company’, region),

decode(grouping(territory),1, ‘Total Region’, territory),
sum(sales_dollars) Total_Sales

FROM sales
GROUP BY CUBE (region, territory);

Decode is a translation that changes the grouping indicator of
‘1’ to another value of ‘Total Company’ or ‘Total Region’.
Rollup and Cube return a value of 1 if NULL results from
CUBE or ROLLUP and returns 0 if it is a natural result.

48

Group By with Cube
Cube result From the previous query

REGION TERRITORY TOTAL_SALES
EAST 1 1500.00
EAST 2 2000.00
EAST Total Region 3500.00
WEST 1 3000.00
WEST 2 500.00
WEST Total Region 3500.00
Total Company 1 4500.00
Total Company 2 2500.00
Total Company Total Region 7000.00

49

Explain for Group By with Cube

Select decode(grouping(region),1,'Total Company', region),
decode(grouping(terr),1, 'Total Region', terr),
sum(total_sales) Total_Sales
FROM sales
GROUP BY CUBE (region, terr);

Rows Row Source Operation
0 SELECT STATEMENT MODE: ALL_ROWS
9 SORT (GROUP BY)

16 GENERATE (CUBE)
4 SORT (GROUP BY)

10 TABLE ACCESS (FULL) OF 'SALES' (TABLE)

50

Grouping Sets
Enhances groupings with Cube and Rollup
Can specify the exact level of aggregation.
Aggregations across 3 different groupings.

Cube needs many groupings
Union All uses 3 queries

Select month, terr, prod,
sum(total_sales) sum_sales
From sales
Group By Grouping Sets
((month, terr, prod),
(month, prod), (terr, prod));

month prod terr total_sales
1 1 8 200
2 1 8 150
1 2 8 300
2 2 8 400
1 1 9 1400
2 1 9 1600
1 2 9 1500
2 2 9 1475

Input data

51

297592
70082
300091
35081
307592
55082
290091
50081
1475922
1600912
400822
150812
1500921
1400911
300821
200811
SUM_SALESPRODTERRMONTH

Grouping Sets Query Result

52

Grouping Sets
Prunes the aggregates you don’t need.

Does not aggregate as much as cube or rollup.
BUT the access path is not as efficient!

Computes all groupings in Grouping Sets and
combines results with a Union All.
Composite columns can be specified by grouping
columns in parentheses to be treated as a single unit
by the Cube or Rollup.
Concatenated groupings let you take multiple
grouping sets, cube or rollup operations and
separate them with commas to form a Group By

53

Grouping Sets Explain

Select month, terr, prod, sum(total_sales) sum_sales From sales
Group By Grouping Sets ((month, terr, prod), (month, prod), (terr, prod));

Rows Execution Plan
0 SELECT STATEMENT MODE: ALL_ROWS

21 TEMP TABLE TRANSFORMATION
0 MULTI-TABLE INSERT
0 DIRECT LOAD INTO OF 'SYS_TEMP_0FD9D6605_88850'
0 DIRECT LOAD INTO OF 'SYS_TEMP_0FD9D6606_88850'
0 SORT (GROUP BY ROLLUP)
0 TABLE ACCESS (FULL) OF 'SALES' (TABLE)
0 LOAD AS SELECT

21 SORT (GROUP BY)
21 TABLE ACCESS (FULL) OF 'SYS_TEMP_0FD9D6605_88850' (TABLE (TEMP))
21 VIEW
10 VIEW
11 UNION-ALL
2 TABLE ACCESS (FULL) OF 'SYS_TEMP_0FD9D6605_88850' (TABLE (TEMP))

15 TABLE ACCESS (FULL) OF 'SYS_TEMP_0FD9D6606_88850' (TABLE (TEMP))

next->Model

54

10g Inter-row and Inter-array Calculations:
The Model Clause

Another use of analytic capabilities
Spread-sheet type functionality

But, this is not Excel!
Map columns into partitions, dimensions and measures

Partitions: viewed as an independent array
Dimensions: cells in a partition to define characteristics.
Measures: data cells (aka facts).

Model clause is processed after all other clauses except
Order By.
“return updated rows” clause only displays changed rows.
To insert, update or merge values in a table, you need to
use the Model results as input to the insert, update, merge
statement.

55

Eg: Project Next quarters Sales
based on the last 2 quarters.

INPUT:
Select region reg, product prod,

quarter qtr, sales from
Qtr_Sales;

Reg Prod Qtr Sales
E 1 04Q4 4550
E 1 05Q1 5000
E 2 04Q4 6300
E 2 05Q1 6700
W 1 04Q4 7900
W 1 05Q1 7700
W 2 04Q4 2500
W 2 05Q1 4000

The Model Clause: Example
Select * from Qtr_Sales
MODEL return updated rows
Partition By (region)
Dimension By (product,quarter)
Measures(sales)
Rules (
sales[1,’05Q2’]=sales[1,’05Q1’]-

sales[1,’04Q4’]+sales[1,’05Q1’] ,
sales[2,’05Q2’]=sales[2,’05Q1’]*0.5)
Order by region, product;

QUERY RESULT
Reg Prod Qtr Sales
E 1 05Q2 5450
E 2 05Q2 3350
W 1 05Q2 7500
W 2 05Q2 2000

56

Explain of the Model Clause
Select * from Qtr_Sales
MODEL return updated rows
Partition By (region)
Dimension By (product,quarter)
Measures(sales)
Rules (
sales[product=1,quarter='05Q1']=sales[1,'05Q1']-

sales[1,'04Q4']+sales[1,'05Q1'] ,
sales[2,'05Q1']=sales[2,'05Q1']*0.5)
order by region, product;

Rows Execution Plan
------- ---

0 SELECT STATEMENT MODE: ALL_ROWS
4 SORT (ORDER BY)
4 SQL MODEL (ORDERED FAST)
8 TABLE ACCESS MODE: ANALYZED (FULL) OF 'QTR_SALES'

57

The Model Clause
Dimensions

A cell reference must qualify all dimensions in the
“dimension by” clause.
Positional Reference

Dimension By (product,quarter) …
sales[2,’05Q2’]=sales[2,’05Q1’]*0.5)

Symbolic Reference
sales[product=2,quarter=’05Q1’]=…
Only for updating existing cells. If the second quarter
of 05 has no data yet, then no rows will be returned for
the following:

sales[product=2,quarter=’05Q2’]=…

58

Ordering of Rules
Sequential (the default)

The order the rules are listed in the Model clause.
Select … Model … Rules Sequential Order

Automatic
Dependencies are evaluated and processes
depending on this order.

Select … Model … Rules Automatic Order ….

The Model Clause

59

The Model Clause
Current Value Function cv()

Apply specs from the left side of a formula to the right.
Like a short form version of a join condition.

Select * from Qtr_Sales
MODEL return updated rows
Partition By (region)
Dimension By (product,quarter)
Measures(sales)
Rules (
sales[2,quarter between '04Q4' and

'05Q1']=sales[1,CV(quarter)]*1.1)
Order by region, product;

R PRODUCT QUAR SALES
E 2 04Q4 5005
E 2 05Q1 5500
W 2 04Q4 8690
W 2 05Q1 8470

60

Example of the Model Clause with the Current Value Function
Select * from Qtr_Sales
MODEL return updated rows
Partition By (region)
Dimension By (product,quarter)
Measures(sales)
Rules (
sales[2,quarter between '04Q4' and '05Q1']=sales[1,CV(quarter)]*1.1)
Order by region, product;

Rows Execution Plan
------- ---

0 SELECT STATEMENT MODE: ALL_ROWS
4 SORT (ORDER BY)
4 SQL MODEL (ORDERED)
8 TABLE ACCESS MODE: ANALYZED (FULL) OF 'QTR_SALES'

61

The Model Clause
Reference Models and Main Models

Reference models
Allow you to reference many multi-dimensional arrays
from a Main model.
Reference models are read-only & used as lookup
tables.
Reference models have a Name.
Cannot have a Partition clause.

Main Model
The multi-dimensional array that has its cells updated.
Can have one or more reference models.

62

The Model Clause
Reference Models and Main Models - Example

Reference Model Select Statement
select qtr, rate_pct as rt from

inflation_rate;
Qtr rate_pct
04Q4 1
05Q1 0.5

Qtr_Sales table used in the Main Model.
select * from qtr_sales
where product=1 and
quarter='04Q4';
R PRODUCT QUAR SALES
E 1 04Q4 4550
W 1 04Q4 7900

SUM ………… 12450

Let’s look at an example that uses a reference model
of inflation rates by quarter. This will be used in the
main model to convert sales dollars into today’s
dollars taking inflation rates into consideration.

63

Query with Main and Reference Model
Select product, quarter, sl from Qtr_Sales
Group By product, quarter
MODEL return updated rows
Reference inf_rate on (
select qtr, rate_pct
as rt from inflation_rate)

Dimension By (qtr) Measures (rt)
MAIN sale_model
Dimension By (product,quarter)
Measures(sum(sales) sales, 0 sl)
Rules (sl[1,'04Q4']=sales[1,'04Q4'] +
(sales[1,'04Q4']*inf_rate.rt['05Q1']/100) +
(sales[1,'04Q4']*inf_rate.rt['04Q4']/100));

The Model Clause
Reference Models and Main Models - Example

RESULT OF THE QUERY
PRODUCT QUAR SL

1 04Q4 12636.75

The query on the left uses the
inflation rate as input and
calculates the current value of
’04Q4’ sales by multiplying it
be the ’04Q4’ inflation rate
and the ’05Q1’ rate. The result
is below. Note that 12636.75 =
12450 + 124.50 + 62.25

64

Model Example: Reference Models and Main Model
Select product, quarter, sl from Qtr_Sales
Group By product, quarter
MODEL return updated rows
Reference inf_rate on (select qtr, rate_pct as rt from inflation_rate)
Dimension By (qtr) Measures (rt) MAIN sale_model
Dimension By (product,quarter)
Measures(sum(sales) sales, 0 sl)
Rules (sl[1,'04Q4']=sales[1,'04Q4'] +
(sales[1,'04Q4']*inf_rate.rt['05Q1']/100) +
(sales[1,'04Q4']*inf_rate.rt['04Q4']/100)) ;

Rows Execution Plan
------- ---

0 SELECT STATEMENT MODE: ALL_ROWS
1 SQL MODEL (ORDERED FAST)
2 REFERENCE MODEL OF 'INF_RATE'
2 TABLE ACCESS (FULL) OF 'INFLATION_RATE' (TABLE)
1 FILTER
1 SORT (GROUP BY)
2 TABLE ACCESS MODE: ANALYZED (FULL) OF 'QTR_SALES'

65

“For loop” can be used.
Rules (sales[FOR product in (2,3),quarter between
’04Q4’ and ’05Q1’]=sales[1,CV(quarter)*1.1])
1 formula to calculate many cells.

Ignoring Nulls
Use the IGNORE NAV feature to substitute a value for
NULLS.

Defaults: number=0; date=01-JAN-2000;char=‘ ‘.
Select … Model Ignore_NAV return updated rows … ;

Iterate clause to calculate formulas iteratively for a certain
number of times.

The Model Clause
Other Features

66

Bonus Section
If time allows!

Joins, sub-queries and anti-joins
Note: in 9i and 10g access paths are improved

The optimizer is better able to distinguish and
rewrite queries in the optimal manner. For
example, you will now often find correlated
and non-correlated queries take the same
access path in 10g.

67

Comparing Joins: Nested Loop
Along with merge-scan, the most common type. e.g.

Select * From Table1 T1, Table2 T2
Where T1.Table1_Id = T2.Table1_id;

for each row in the outer table (Table1), the inner table (Table2)
will be accessed with an index to retrieve the matching rows. The
next row on Table1 is then retrieved and matched to Table2.
efficient index access is needed on the inner table
Commonly used in OLTP apps.
Useful for a small number of rows & first_rows parm.
Cluster Joins are a special case of Nested-Loop join

Have many drawbacks and are rarely used

68

Comparing Joins: Merge Scan
aka. sort-merge. Useful for:

processing a large number of rows.
inefficient index access and sorted data
Batch processing and all_rows goal
Inequality clause <, <=, > or >=

Fast because of:
database multi-block fetch (helped by init.ora parm
db_file_multiblock_read_count) capabilities
The fact that each table is accessed once
Faster than hash joins if rows are already sorted and sorts
do not need to be performed. Otherwise use hash join.

Steps performed for Merge-Scan are:

69

Comparing Joins: Merge-Scan
1) Pick an inner and outer table
2) Access the inner table, choose the rows that match the predicates

in the Where clause of the SQL statement
3) Sort the rows retrieved from the inner table by join columns,

store these as a Temp table. This step is not performed if data is
ordered by the keys and efficient index access exists.

4) outer table may also be sorted by the join columns so both tables
to be joined are sorted the same way. This step is optional and
dependent on whether the outer table is well ordered by the keys
and whether efficient index access can be used.

5) Read outer & inner (likely sorted temp) tables, get rows that
match the join criteria. This is quick due to sorted data.

6) Optionally sort the data if a Sort was performed (e.g. 'Order By')
using different columns than used to perform the join.

70

Comparing Joins: Hash Join
very efficient join when used in the right situation: when 1 of the
2 tables is small and fits in memory.
The larger of the 2 tables is chosen as the Outer table
Outer and inner are broken into sections and the inner Tables
join columns are stored in memory (if hash_area_size is large
enough) and 'hashed'.

hashing provides an algorithmic pointer that makes data
access very efficient.
Oracle attempts to keep the inner table in memory since it will
be 'scanned' many times.
Outer rows that match the query predicates are then selected
and for each Outer table row chosen, hashing is performed on
the key and the hash value is used to quickly find the
matching row in the Inner Table.

71

Comparing Joins: Hash-Join
No sorting is performed and index access can be
avoided since the hash algorithm is used to locate the
block where the inner row is stored.
Hash-joins are also only used for equi-joins.
Use init.ora parm pga_aggregate_target to automatically
size sql working areas.

72

Comparing Joins: Star-Joins
A join common to Data Marts and Data Warehouses.
a join of a large "Fact" table with 2 or more smaller
tables commonly called "Dimensions". Fact tables have
transactional properties. The Dimensional tables are
used to describe the Fact table (customer, product).
Star queries get their name because there is a central
Fact table surrounded by smaller dimensional tables that
are directly related to the Fact table
Consider the case of the central Fact table that is being
joined to 3 smaller Dimensional table. They are
transformed from the written query on the left below to
the transformed one on the right.

73

Comparing Joins: Star Joins
ORIGINAL QUERY
SELECT *
FROM Fact, Dim1, Dim2,
Dim3
WHERE
Fact.dim1_id = Dim1.id and
Fact.dim2_id = Dim2.id and
Fact.dim3_id = Dim3.id and
Dim1.name like :in_var1 and
Dim2.desc between :in_var2

and :in_var3
and Dim3.Text < :in_var4;

TRANSFORMED QUERY
SELECT *
FROM Fact, Dim1, Dim2, Dim3
WHERE Fact.dim1_id in

(SELECT dim1.id from dim1
WHERE dim1.name like :in_var1)

and Fact.dim2_id in
(SELECT dim2.id from dim2
WHERE Dim2.desc between
:in_var2 and :in_var3)

and Fact.dim3_id in
(SELECT dim3.id FROM dim3
WHERE Dim3.Text < :in_var4);

74

Comparing Joins: Star-Joins
The subselects are performed first. Bitmap indexes on Fact
join columns, are merged (in this case ANDed) & Fact rows
can be accessed using the resulting index values. The Fact
rows retrieved are then joined to the Dimensions to
complete the query.
Using this approach, a Cartesian product is not required.

e.g. 3 dim table cartesian product of 10,000 * 10,000 * 10,000 = 1,000,000,000,000 rows

To implement star_query transformation:
Set init.ora parm star_transformation_enabled=true
Create bitmap indexes for all of the foreign-key columns
on the fact table
Implement R.I. Only between the fact table and the
dimension tables.

next->Subselects

75

Dealing With Subqueries
In and Exists

Correlated Subquery (EXISTS): What is it?
A subquery is Correlated when it is joined to the outer query
within the Subquery. E.g.

Select * From Cust Where cust.city = ‘Chicago’ and
Exists (Select cust_id From Sales s where s.ttl_sales >
10000 and sales.cust_id = Cust.cust_id);

the last line in the above query is a join of the outer Cust table
and inner Sales tables. The outer query is read and each outer row
(Cust = ‘Chicago’) is joined to the Subquery. i.e., the inner query
is executed once for every row read in the outer query.
efficient where a small number of rows are processed usually due
to efficient index access to the inner table for a small number of
rows- not when a large number of rows are read.

76

Dealing with Subqueries
Non-correlated Subquery (IN): What is it?

A subquery is said to be uncorrelated when the two tables are not
joined together in the inner query. The inner (sub) query is
processed 1st and the temporary result set table is joined to the
outer table. E.g.

Select last_name, first_name
From Customer Where customer_id IN
(Select customer_id From Sales where
sales.total_sales_amt > 10000);

Sales table is processed first and all entries with a total_sales_amt >
10000 will be joined to the Customer table.
Efficient where a large number of rows is being processed.

77

Turn Subqueries into Joins
When possible, use joins rather than subqueries
The query on the previous slide becomes:

Select cust.last_name, cust.first_name
From Customer cust, Sales
Where cust.customer_id = sales.customer_id
and sales.total_sales_amt > 10000;

Gives the optimizer more choices when deciding on
query plan

optimizer can choose between nested loop, merge
scan, hash and star joins when a Join is used.
The options are limited when the compiler and
optimizer are presented with a Subquery.

78

In vs. Exists
Use a join where possible
IN executes subquery once. Exists executes subquery once per
outer-table row
IN is like merge-scan.
Exists is like nested-loop join.
EXISTS tries to satisfy the subquery as quickly as possible and
returns ‘true’ if the subquery returns 1 or more rows –> it should
be indexed. Optimize execution of the subquery.
You need to understand the number of rows processed and the
access paths being used.

Large outer-table and small inner-table generally favors “in” over “exists”.
Small outer-table result set and large well indexed inner-table generally
favors “exists” over “in”.

79

Comparing In and Exists
Access Paths

‘IN’ Access Plan: same as Merge Join
Rows Execution Plan
------- ---

0 select statement goal: choose
1 sort (aggregate)

20000 merge join
20001 sort (join)
20000 view of 'VW_NSO_1'
20000 sort (unique)
20000 table access goal: analyzed full of ‘cust_addr_test’
20000 sort(join)
25000 table access goal: analyzed (full) of 'CUST_TEST'

80

Comparing In and Exists
Access Paths

Exists access plan: Same as Nested Loop Join
Rows Execution Plan
------- ---

0 select statement goal: choose
1 sort (aggregate)

20000 filter
25001 table access goal: analyzed full of ‘cust_test’
25000 table access goal: analyzed full of

‘cust_addr_test’

81

Not In vs. Not Exists
Subqueries may use NOT IN and NOT EXISTS
BUT, they are different! Be careful of NOT IN and null values!

NOT IN: if the subquery returns NULLS, the results will NOT be returned.
NOT EXISTS: a value in the outer query that has a NULL value in the
inner will be returned.

NOT IN can perform well particularly when the access path is
a “hash anti-join” and can often outperform a Not Exists

NOT IN with /*+ HASH_AJ */ hint is very fast
Optimizer uses nested loop algorithm by default unless a hint is used
(unlike IN which used merge join).

NOT EXISTS can sometimes be more efficient since the
database only needs to verify non-existence.

With NOT IN the entire result set must be materialized.
Also uses nested loop algorithm by default

82

Comparing Not In vs. Not Exists
Comparison with indexes: Using NOT IN
SELECT count(*) FROM cust_test ct WHERE ct.cust_no
NOT IN (select cat.cust_no from cust_addr_test cat)

call count cpu elapsed disk query current rows
total 4 291.24 298.83 0 5287981 115946 1

ROWS EXECUTION PLAN
0 select statement goal: choose
1 sort (aggregate)

5000 filter
25001 table access goal: analyzed full of ‘cust_test’
25000 table access goal: analyzed full of ‘cust_addr_test’

83

Comparing Not In vs. Not Exists
Comparison with indexes: Using NOT EXISTS

SELECT count(*) FROM cust_test ct WHERE
NOT EXISTS (select 1 from cust_addr_test cat where
cat.cust_no = ct.cust_no)

call count cpu elapsed disk query current rows
total 4 0.36 0.36 0 50359 5 1

ROWS EXECUTION PLAN
0 select statement goal: choose
1 sort (aggregate)

5000 filter
25001 table access goal: analyzed full of ‘cust_test’
25000 index goal: analyzed (unique scan) of

‘cust_addr_test_a01’ (unique)

84

select count(*) from t1
where col01 not in

(select col01 from t2);

COUNT(*) result = 0

select count(*) from t1
where not exists
(select 1 from t2
where t1.col01=t2.col01);

COUNT(*) result = 3

Comparing Not In vs. Not Exists

Solved By:
select count(*) from t1 where col01 not in
(select col01 from t2 where col01 is not null);

Be careful of Not In with Null Values

85

Comparing Not In vs. Not Exists
Other fast options for performing anti-joins:

Hash Anti-Join is often be the quickest approach.
Outer join query is also a very fast way to do this.

select count(*) TEST6_with_indexes
from cust_test ct, cust_addr_test cat
where ct.cust_no = cat.cust_no (+) and cat.cust_no is
null

You can also use Minus to perform anti-join BUT:
Like a Union, number of columns and types
must match. It is limiting

86

Conclusion
Become familiar with Oracle’s SQL functions.
Try out functions as well as your own solutions to problems.
This can help you improve your SQL skills and can build a
repertoire that will help your most experienced developers.
SQL is becoming more complicated.
We can now do things in native SQL that used to only be
possible in advanced query packages.

Get familiar with Oracle’s supplied PL/SQL packages
Oracle is becoming more ansi SQL92 and 99 compliant
Also with 10g: regular expressions
SQL can be fun! (or at least interesting)

